
 — 1 —

JP1 RDF File Specification Version 4
Released 4 May 2009

Author: Mike England (mr_d_p_gumby)

http://www.hifi-remote.com/forums/

An RDF file defines the characteristics of a JP1 remote to the various JP1 software tools. The acronym “RDF”
stands for Remote Definition File, and is also the file extension used for these files. Without an applicable RDF file,
the JP1 tools would not know how to interact with a JP1 remote.

This document is intended to serve several purposes. First, it collects together and documents RDF file
requirements from all of the various JP1 programs so that program authors can work from a common set of
specifications. Second, it is intended to aid those creating and maintaining RDF files.

NOTE: Throughout this document, references to the JP1 program IR.exe should be assumed to apply equally to
the RMIR program currently in development.

http://www.hifi-remote.com/forums/

 JP1 RDF File Specification Version 4

 — 2 —

RDF file names

RDF files must be named according to a specific set of rules. JP1 programs like IR and RM use parts of the
filename for special purposes, and violating the rules may prevent the RDF from being used at all.

The RDF filename must begin with the ASCII characters that represent the remote’s signature. This is usually a
string of eight characters, but some older remotes have only four-character signatures. In special cases the RDF
name may start with less than the full signature, but in general all signature characters should be part of the name.
For example, a 15-1994 remote has a signature of “RSL6RSL0”, so the filename for its RDF is:
 RSL6RSL0 (RS 15-1994 6-in-1 Smart).rdf

The signature part of the filename is terminated with a space character.

• The signature part of the RDF file name is very significant to the JP1 IR program When downloading from the .
remote, IR identifies the signature currently contained in the remote (stored in the EEPROM of JP1 remotes
starting at address $002; stored within the flash memory of JP1 x remotes). It then attempts to match the .
signature par of the RDF file names against the downloaded signature. If a single match is found, the RDF is t
automatically selected. If multiple matches are found, IR then compares items listed in the [Fixed Data]
section of the RDF files. Again, if a single match is found, the RDF is automatically selec ed. If multiple RDF t
files match, then the user is prompted to select the desired RDF.

The next part of the filename is the name of the remote, enclosed within parenthesis. In the example above, the
remote’s name is “RS 15-1994 6-in-1 Smart”. In naming the remote, do not use an underscore (_)
character except as directed below, and do not use parenthesis. There should not be any characters between the
closing parenthesis and the dot for the file extension, which must always be RDF.

RDF files often apply to more than one remote model. The underscore character is used as a delimiter within the
remote name so that individual names may be displayed to the user. When the underscore character is used, it
interacts with the dash (-) and space characters. Everything up to the last dash or space preceding the first
underscore is used as the beginning of the name for all remotes. Everything after (and including) the first dash or
space following the final underscore is used as the end of the name for all remotes. If a dash or space is not
found, delimiting takes place at the appropriate parenthesis or underscore as necessary. Characters between the
delimited beginning and ending parts of the name are used to construct the individual names.

Some examples will help to make this clearer.

 EBV0EBV1 (URC-7550_7552_7560_7562 One for All).rdf

This RDF file applies to four different models, all of which have the same signature (EBV0EBV1).
The remote names displayed by RM for this RDF are:
 URC-7550 One for All
 URC-7552 One for All
 URC-7560 One for All
 URC-7562 One for All

 CYC1 (Navigator URC-44000-B02_B04).rdf

This RDF file applies to two models having the signature “CYC1”. The remote names displayed by RM for this RDF
are:
 Navigator URC-44000-B02
 Navigator URC-44000-B04

 JP1 RDF File Specification Version 4

 — 3 —

File format

The general format of an RDF file is basically the same as a Windows INI file. By convention, the layout of the
RDF file sections will follow the order shown below. While this specification does not require this exact section
order, there are some restrictions on which sections must come after other sections, so it is suggested that this
order be used.

 [General]
 [Extender]
 [SpecialProtocols]
 [Settings]
 [Checksums]
 [FixedData]
 [AutoSet]
 [StaticUpgrades]
 [DeviceTypes]
 [DeviceTypeAliases]
 [DeviceButtons]
 [Buttons]
 [MultiMacros]
 [ButtonMaps]
 [DigitMaps]
 [Protocols]
 [SetupCodes]

It should be noted that most entries in an RDF file are not arbitrary. With few exceptions, they are intended to
communicate to programs exactly how the remote behaves, where and how it stores data, what complement of
buttons it has, and so on. For example, if a remote stores a particular set of data at address $100, there is no
point in changing the RDF entry to a different value. This would simply cause JP1 programs to store the data in
the wrong place.

When adding or modifying a line in the RDF file, be careful not to have any extra trailing space or tab characters at
the end of the line as this sometimes causes the line to be ignored. Also, when editing an RDF file in operating
systems other than Windows, be sure each line is terminated with both the CR & LF characters.

Unless otherwise noted, throughout the RDF numeric values are considered as decimal values, unless prefixed with
a dollar sign ($) to have the number be interpreted as hexadecimal. It is preferred that hexadecimal values be
used for addresses, button codes, etc., but this is not mandatory.

Address ranges are specified in the form: StartAddr..EndAddr.

In general, string arguments and item names may not use any of the following characters, unless the section
allows for quoted values:

 () , ; =

There is no official method for adding comments to an RDF file. You should assume that every line in the RDF file
will be processed. In most cases, trying to add a comment line will cause programs to display error messages. An
unofficial method is to locate any comment lines at the very beginning of the RDF file, or at the end of the
[FixedData] section, and to begin the line with a “#” character. This is not foolproof, as you must still make certain
that the line is not accidentally recognized as a valid fixed data entry, and it should be tested with all programs that
utilize RDF files. At present, this includes the following programs: IR, RM, RMIR, ECC and EXTINSTALL.

 JP1 RDF File Specification Version 4

 — 4 —

 [General] section

In the [General] section, all entries are in the form Item=Value, with no spaces on either side of the equals
sign. All entries are optional and may appear in any order within the [General] section, though the [General]
section itself should be the first section in the RDF file. Most entries can simply be omitted if they do not apply,
and the programs will respond by supplying a default value internally. Omitting some entries can severely limit the
functionality provided by programs that use the RDF file and/or result in incorrect data being uploaded to a remote.

The defined items are listed below, loosely grouped by their functionality.

• This group of entries is concerned with naming and identifying the remote for the user. All entries are
optional.

Name
Display name of the remote. No special processing is performed on this text string, so in those cases
where an RDF file applies to more than one remote, this entry should name them all.

Identification
A string displayed by programs (when multiple RDFs match a given signature) that should help the user to
identify the remote supported by that RDF. The entire entry must be placed on a single line, as the entry
is terminated when the first line end is encountered.

OldRemoteID
A number used to identify a specific remote in KM files saved with versions of KM prior to v6.06. If not
applicable, this entry should be omitted.

Allows for backward compatibility with older upgrades when importing into RM or other programs. If the
RDF applies to more than one remote, an ID number should be entered for each remote, separated by
commas.

For example, the URC-881x/801x/601x RDF has the following entry:

 OldRemoteID=24,24,24

• This group of entries defines important address ranges and values that specify how the data storage is
arranged in the remote. I one of the address range entries is omitted, it implies that the remote does not f
have a storage location for data of that type.

SectionTerminator
Byte value used by the remote to mark the end of each memory section. When omitted, defaults to $00.
Most more recent remotes use $FF, so they would need to have the following entry:

 SectionTerminator=$FF

BaseAddr
This entry is only used for newer JP1.x remotes whose data storage area is contained within the main flash
memory of the processor. When present, it specifies the physical flash memory address of the first byte of
the data storage area. All other addresses and address ranges in the RDF are treated as offsets from this
address. When omitted, defaults to $0000.

This example specifies that the data storage area begins at hex address $600 within the main flash
memory:

 BaseAddr=$0600

EepromSize
Specifies the total size of the remote’s data storage area, in bytes (not bits). The EEPROM designation
refers to the size of the EEPROM chip used in the original JP1 remotes. For JP1.x remotes, this refers to
the total size of the data storage area reserved in the main flash memory.

 JP1 RDF File Specification Version 4

 — 5 —

This example specifies the size as 2048 (800 hex) bytes:

 EepromSize=$800

AdvCodeAddr
Specifies the address range of the advanced code section in the remote’s data storage area. This is the
area where keymoves and macros are stored. If this entry is omitted, it implies that the remote cannot
store keymoves and macros.

This example specifies that keymoves and macros are stored in the area starting at hex address $024 and
ending at hex address $0FF (a total of 220 bytes):

 AdvCodeAddr=$024..$0FF

UpgradeAddr
Specifies the address range of the upgrade section in the remote’s data storage area. This is where device
upgrades and protocol upgrades are stored. This entry refers to the address of the pointer to the device
upgrade list, which is usually $100 for S3C80-based and 6805-based JP1 remotes and $104 for 740-based
JP1 remotes. Newer JP1.2/JP1.3 remotes generally start the upgrade area around $400. If this entry is
omitted, it implies that the remote cannot store upgrades.

This example specifies that device and protocol upgrades are stored in the area starting at hex address
$100 and ending at hex address $3FF (a total of 768 bytes):

 UpgradeAddr=$100..$3FF

LearnedAddr
Specifies the address range of the learned codes section in the remote’s data storage area. This is where
the remote stores data for keys that have been learned from another remote. When this entry is present,
it implies that the remote has learning capability, or at least the ability to play back learned data.

This example specifies that the learned key data is stored in the area starting at hex address $400 and
ending at hex address $7FD (a total of 1022 bytes):

 LearnedAddr=$400..$7FD

DevUpgradeAddr
Specifies the address range of the device-specific upgrade section in the remote’s data storage area.
Applies only to those remotes that have device-specific upgrade areas in the data storage area, and should
be omitted otherwise. (This excludes checksum bytes, if defined.)

This example specifies that the device-specific upgrade section data is stored in the area starting at hex
address $502 and ending at hex address $6FF (a total of 510 bytes):

 DevUpgradeAddr=$502..$6FF

TimedMacroAddr
Specifies the address range of the timed macro section in the remote’s data storage area. Applies only to
those remotes that have a timed macro capability and store this type of macro in a separate area, and
should be omitted otherwise. (This address range excludes checksum bytes, if defined.)

This example specifies that the timed macro data is stored in the area starting at hex address $702 and
ending at hex address $7CE (a total of 205 bytes):

 TimedMacroAddr=$702..$7CE

Note: The TimedMacroAddr entry will be ignored if MacroCodingType=2. See discussion in the
MacroCodingType section of this document.

 JP1 RDF File Specification Version 4

Labels
Specifies the location and length of the button text labels section in the remote’s data storage area.
(These labels display on an LCD screen on the remote.) Applies only to those remotes that support this
feature; omitted otherwise. When present, it implies that there is one text label for each device button,
and the length parameter specifies the length of all entries.

The Labels entry takes the form:

 Labels=UserLblAddr, Length [, [PadByte][, DfltLblAddr]]

where:
 UserLblAddr is the start address of the section holding user-defined labels
 Length is the length in bytes of each label
 PadByte is the byte value used to pad short text in labels
 DfltLblAddr is the start address of a second labels section holding default labels

Using the PadByte or DfltLblAddr parameters in this entry will make the RDF incompatible with
programs that have not been updated to comply with RDF specification version 4. An alternate
syntax is allowed in this case to allow for a transitional period while various JP1 programs are

updated to comply with this version of the RDF specifications.
See Transition From RDF 3 to RDF 4 section of this document for further details

The PadByte parameter is optional, and may be omitted. If omitted, the default value is $20 (ASCII
space character).

The DfltLblAddr parameter is only used if the remote supports a set of default labels, and should be
omitted otherwise.

At present, there are two different approaches to labels that are supported by this entry.

The first approach is as used in the 15-100 remote. The remote displays a 10-character text label on the
LCD display for each device button. The labels are populated by default from built-in default values (in
English or Spanish), but the user can set each label as desired. The entry for the 15-100 is:

 Labels=$200, 10

This specifies that the user text labels are stored starting at hex address $200, and that each label is 10
characters long. Text shorter than 10 characters will be padded on the right with space characters. The
number of entries is indirectly defined by the number of buttons defined in the [DeviceButtons]
section.

The second approach is as used in the URC-7780/7781. This remote does not have any device buttons; it
has a number of device “slots”. The user chooses a device from the LCD display by scrolling through all
the slots that have a setup code assigned. The remote will display a 4-character text label on the LCD
display for each active device. The entry for the URC-7780 is:

 Labels=$38, 4, $FF, $6C

This specifies that the user text labels are stored starting at hex address $38, that each label is 4
characters long, and that the default labels are stored at hex address $6C. Text shorter than 4 characters
in both the user and default labels will be padded on the right with $FF bytes. The number of entries is
indirectly defined by the number of buttons defined in the [DeviceButtons] section. (Even though this
remote has no device buttons, the device “slots” are treated as buttons in that section of the RDF file.)

 — 6 —

 JP1 RDF File Specification Version 4

 — 7 —

• This group of entries is concerned with how the remote works with keymoves (AKA advanced codes or EFCs).
All entries are optional, and will default to the values indicated when the entry is omitted.

AdvCodeFormat
(Related to AdvCodeBindFormat) Specifies the format of keymove data stored in the advanced code
section. The AdvCodeFormat value can be either HEX or EFC. The default value assumed when this
entry is omitted is HEX.

Both AdvCodeFormat and AdvCodeBindFormat combine to reflect how the remote stores command
data within a keymove. The four possible setting combinations s are each discussed below.

Note that AdvCodeBindFormat also affects other aspects of the keymove structure as discussed under
that entry in this document.

 AdvCodeFormat=HEX and AdvCodeBindFormat=NORMAL (one or both entries may be omitted)
 Example: RS 15-1994 (and all JP1 remotes prior to the URC-6131)

This is the original keymove format used in JP1 remotes. (Omitting both entries defaults to this format.)
One or more hex command bytes are included within the keymove structure, and all of them are loaded
into the protocol buffer unmodified. While the remote itself cannot create keymoves longer than one byte
via EFC entry, JP1 programs are able to do so. Some remotes can create multiple-byte keymoves using
the copy-from-another key method.

 AdvCodeFormat=EFC and AdvCodeBindFormat=NORMAL (AdvCodeBindFormat may be omitted)
 Example: URC-6131, Atlas URC-1054 (unextended)

This is the first modification of the keymove format, and is limited to relatively few remotes. It pre-dates
the introduction of 5-digit EFC numbers, so only one-byte keymove commands may be created via EFC
entry on the remote. There are two basic types of keymoves possible, based on the length of the keymove
structure.

Keymoves that contain only one command data byte interpret that byte as a button number (key code),
and effectively behave as if that button had been pressed, using the setup code referenced in the
keymove. The number of command bytes loaded into the protocol buffer depends only on the protocol
executor used by the setup code. Note that in order for anything to happen, the button number must be
defined to do something within the referenced setup code.

Keymoves that contain two command data bytes always have the first byte set to zero. The second byte
contains a 3-digit EFC number (in hex). The remote pre-processes the second byte before loading it into
the protocol buffer by calling a routine to do EFC-to-HEX conversion. This type of keymove is limited to
one-byte commands (3-digit EFCs).

Keymoves that contain more than two bytes of command data are treated as if they contained only one
byte, i.e., the first byte is considered a button number, and the rest are discarded.

 AdvCodeFormat=EFC and AdvCodeBindFormat=LONG
 Example: URC-9960B01, Comcast URC-1067 (and some early JP1.2 remotes)

This is the second modification of the keymove format, and is rarely encountered. It is basically an
expansion of the first modification to allow for use of 5-digit EFC numbers.

Processing of keymoves is exactly the same as discussed above, with the exception that keymoves with
two command bytes may contain a 5-digit EFC (in hex) when the first byte is not zero. In this case, the
remote pre-processes both bytes before loading them into the protocol buffer by calling a routine to do
EFC-to-HEX conversion. This type of keymove is limited to one-byte or two-byte commands (3-digit or 5-
digit EFCs).

 JP1 RDF File Specification Version 4

 — 8 —

There is some variation in how these remotes process a keymove with more than two command bytes.
Some remotes respond as if there were only one command byte, while others behave as if there were two
command bytes.

 AdvCodeFormat=HEX (AdvCodeFormat may be omitted) and AdvCodeBindFormat=LONG
 Example: URC-8820 (and most other JP1.2 or JP1.3 remotes)

This is the most recent modification of the keymove format, and is typically found in most JP1.2 and JP1.3
remotes. It is nearly identical to the second modification, except that hex commands are stored directly in
the keymove command data bytes, rather than EFC values, when the keymove contains two bytes.

Processing of keymoves works the same way. One-byte keymoves are interpreted as button codes as
discussed above.

When the remote processes a two-byte keymove, it simply copies both bytes to the protocol buffer
unmodified. If the protocol executor only expects one byte, the second byte will be ignored; if it expects
two bytes, then both are used. Despite the fact that more than two byte commands could be handled
readily, because of the logic UEI chose to use, this type of keymove is limited to one-byte or two-byte
commands because only the first two bytes are copied to the protocol buffer even if the keymove structure
includes more than two command bytes.

AdvCodeBindFormat
(Related to AdvCodeFormat) The AdvCodeBindFormat value can be either NORMAL (the default) or
LONG.

Note that this setting will impact other aspects of the keymove structure as discussed under the
AdvCodeFormat entry in this document.

In some remotes, advanced code entries are encoded such that both the device button and the length of
the entry are stored in a single byte. In other remotes, the length of the entry is stored in a byte all by
itself. (This causes the overall length of the entry in these remotes to be 1 byte larger than in the other
remotes.)

For remotes that use the extra byte, specify the following:

 AdvCodeBindFormat=LONG

EFCDigits
The EFCDigits value can be either 3 (the default) or 5.

Some remotes use 3-digit EFCs and some use 5-digit EFCs. This is independent of the AdvCodeFormat
parameter described above. Remotes supporting 5-digit EFCs should specify the following:

 EFCDigits=5

• This group of entries is concerned with how the remote works with macros. All entries are optional, and will
default to the values indicated when the entry is omi ted. t

MacroCodingType
Specifies the format of macro data stored in the advanced code section. Set to one of the values discussed
below. If this entry is omitted, the default value is 1 with no additional parameters.

The MacroCodingType entry is in the form:

 MacroCodingType=Type[, TimedMacros[, TMCountAddr]]

where:
 Type is one of the values discussed below.
 TimedMacros specifies if timed macros are supported.
 TMCountAddr is the address of a byte that stores a count of timed macros.

 JP1 RDF File Specification Version 4

 — 9 —

MacroCodingType=1 is the default, and indicates that the remote stores macros in the original format
supported by the JP1 tools. This is the format used by the vast majority of JP1 remotes. A few remotes of
this type supported timed macros, but stored them in a separate area (see TimedMacroAddr).

MacroCodingType=2 is used with some newer remotes that can store different types of macros in the
same area. Macros in these remotes can be encoded to differentiate their nature. At present, this is used
to encode timed macros. When this format is designated, the TimedMacroAddr entry, if present, will be
ignored. (At the present time, the only remotes known to use this format are the URC-7780 & URC-7781.)

Values other than 1 or 2 are not currently supported, and should not be used.

The TimedMacros parameter is optional, and is ignored if MacroCodingType=1. It should be set to Y,
Yes, T, True or 1 to indicate that the remote has timed macro capabilities. If the remote does not
support timed macros then it should be omitted, or set to N, No, F, False, or 0.

The TMCountAddr parameter is only valid if TimedMacros is true (and not being ignored), and is
otherwise ignored. It should only be present if the remote stores a count of timed macros.

For example, the URC-7780's entry looks like this:

 MacroCodingType=2,Y,$2D

This entry specifies that the remote can store timed macros in the same area as other macros, that the
remote supports timed macros, and that a count of the number of stored timed macros is maintained in a
single byte at hex address $2D. If a TimedMacroAddr entry is present in the RDF, it is ignored.

• This group of entries specifies whether a remote supports certain functions or not, and may specify parameters
for those functions when required. All entries are optional, and will default as indicated when the entry is
omitted.

KeyMoveSupport
Set to N, No, F, False, or 0 for remotes that do not support key moves. If the remote supports
keymoves, this entry should be omitted, or set to Y, Yes, T, True or 1.

MacroSupport
Set to N, No, F, False, or 0 for remotes that do not support macros. If the remote supports macros, this
entry should be omitted, or set to Y, Yes, T, True or 1.

FavKey
Some remotes perform special “Fav/Scan” processing for a “favorite” button (typically labeled FAV or
SCAN). This entry specifies parameters for this button, and should only be present if the remote has this
feature.

The FavKey entry is in the form:

 FavKey=KeyCode, DevBtnAddr, MaxEntries, EntrySize[, Segregated]

where:
 KeyCode is the button number assigned to the Fav/Scan button
 DevBtnAddr is the address of the byte that specifies the device to use
 MaxEntries is the maximum number of allowable entries.

The optional argument Segregated specifies whether Fav Key macros are stored within the Key Move
section or segregated off by itself. If present, Segregated should specify the address where Fav Key
macros are to be stored (must be a non-zero value).

For example, the 15-1994's entry looks like this:

 FavKey=$14, $01A, 15

 JP1 RDF File Specification Version 4

 — 10 —

This entry specifies that the Fav Key has a button number of $14, that the device type currently assigned
to the Fav Key is stored at hex address $01A, and that up to 15 Fav Key macros are supported. Since a
Segregated option is not present, Fav Key macros will be stored in the same area as other macros.

PowerButtons
Some remotes utilize the device buttons as power buttons. This entry specifies which device buttons
perform this dual function, and should only be present if the remote operates this way.

The PowerButtons entry is a list of button numbers separated by commas. The button numbers are those
belonging to the device/power buttons, and are listed in ButtonMap order. There must be an entry for each
ButtonMap. A zero should be entered if a given map does not have a power button.

The PowerButtons entry is in the form:

 PowerButtons=Button#ForMap0, Button#ForMap1, etc.

For example, the Scientific-Atlanta ER1 has three ButtonMaps, and the entry looks like this:

 PowerButtons=$3E,$39,$3B

TimedMacroWarning
Applies only to remotes that support timed macros. Set to non-zero for remotes that cannot delete
individual timed macro entries, and thus must delete all entries following one that is deleted. This entry
should normally be omitted (or set to 0) unless it is specifically required.

WavUpgrade
Set to Y, Yes, T, True, or 1 for remotes that allow data to be uploaded via phone or computer audio. If
the remote does not support phone/computer audio upgrades, this entry should be omitted, or set to N,
No, F, False, or 0.

• This group of entries specifies the processor (CPU) used within the remote. All entries are optional, and will
default as indicated when the entry is omitted.

Processor
Specifies the basic processor family, and (indirectly) the JP1 interface type. Only the values listed below
are allowed. If omitted, this entry defaults to S3C80.

Processor=S3C80 used for JP1 remotes with a Samsung S3C80 series processor.
Processor=S3F80 used for JP1.3 remotes with a Samsung S3F80 series processor.
Processor=HCS08 used for JP1.2 remotes with a Freescale HCS08 series processor.
Processor=SST used for JP1.1 remotes with an SST SST65 series processor.
Processor=6805 used for JP1 remotes with a Motorola 68HC05 series processor.
Processor=740 used for JP1 remotes with a Mitsubishi P8/740 series processor.

Two different Samsung S3C80 processors are used in JP1 remotes. They differ in the address where RAM
is located, in execution speed, the location of protocol vectors, and several other details. When an RDF file
specifies Processor=S3C80, the RamAddr entry (see below) is used by programs to differentiate
between the two types.

Two different Motorola 68HC05 processors are used in JP1 remotes. They differ considerably in
capabilities and data formats. When an RDF file specifies Processor=6805, the ProcessorVersion
entry (see below) is used to differentiate between the two types.

ProcessorVersion
For remotes where Processor=6805, set to one of the values listed below. If omitted, the default value
is C9. This entry is ignored for processors other than the 6805, and should be omitted in that case.

 JP1 RDF File Specification Version 4

 — 11 —

ProcessorVersion=C9specifies a 68HC05C9 processor
ProcessorVersion=RC16/18specifies a 68HC05RC16/18 processor

The older C9 version uses a software-only IR engine, and its capabilities most closely resemble remotes
using a 740 processor. The newer RC16/18 version has IR generation hardware, and its capabilities most
closely resemble the S3C80 based remotes. With the exception of the JP1.1 interface, the SST based
remotes are nearly identical to the RC16/18.

RamAddr
This entry is used only when Processor=S3C80 or Processor=S3F80; it should be omitted otherwise.
It specifies the location of RAM within the processor, but is used indirectly to determine the type of S3C80
processor used in the remote. JP1 terms for the two types are:
 S3C8 refers to the older version where RAM is located at $8000.
 S3C8+........... refers to the newer version where RAM is located at $FF00.

When Processor=S3C80, this entry must be one of the following:

RamAddr=$8000 specifies an S3C8 (“old”) type processor. (Default if omitted.)
RamAddr=$FF00 specifies an S3C8+ (“new”) type processor.

When Processor=S3F80, this entry must be:

RamAddr=$FF00

• This group of entries is concerned with specifying how the remote works with device upgrades. All entries are
optional, and will default as indicated when the entry is omitted.

2BytePID
Specifies the format used to store the protocol ID (PID) within a device upgrade. Set to Y, Yes, T, True,
or 1 for remotes that store the PID as a two-byte value. Omit the entry, or set to N, No, F, False, or 0
for remotes that store the PID as a one-byte value, and use a single bit flag in the upgrade header to flag
if the PID is greater than $FF.

DevCodeOffset
Offset value added to the setup code. If this entry is omitted, it defaults to zero. Certain remotes (for
example, the RCU810) have an offset value added to the internal setup code number when the setup
codes are entered or displayed on the remote itself.

For example, take the case where the remote uses an offset of 14 for its Setup Codes, and you have set
the TV device to setup code 0170 on the remote. Without this entry, when viewed in the IR program, the
setup code assigned to the TV button would show as 0156. With DevCodeOffset=14, IR will also display
the code as 0170, which matches what you would enter on the remote itself.

MaxUpgradeLength
Specifies the maximum size for a device upgrade, in bytes. If omitted, no limit will be placed on the size of
a device upgrade.

OEMDevice
Specifies parameters that define an OEM device type. If omitted, it will be assumed that the remote does
not have an OEM device type.

The OEMDevice entry is in the form:

 OEMDevice=DeviceNo, DeviceAddr

where:
 DeviceNo is the device index of the OEM device type
 DeviceAddr is the address of the OEM bitmap.

 JP1 RDF File Specification Version 4

 — 12 —

(Bit 0 of the OEM bitmap corresponds to the first device button; bit 1 corresponds to the second device
button, etc.)

For example, the Replay RDF has the following entry:

 OEMDevice=4, $015

OmitDigitMapByte
Set to Y, Yes, T, True, or 1 for remotes that do not contain digit map bytes within their device upgrades.
This entry should normally be omitted (or set to N, No, F, False, or 0) unless it is specifically required.

UpgradeBug
Set to non-zero for remotes that must use the device-specific upgrade area for all upgrades that include a
protocol upgrade. This entry should normally be omitted (or set to 0) unless it is specifically required.

• This group of entries is concerned with specifying how the remote works with p otocol upgrades. All entries r
are optional, and will default as indicated when the entry is omitted.

MaxProtocolLength
Specifies the maximum size for a protocol upgrade, in bytes. If omitted, no limit will be placed on the size
of a protocol upgrade.

ProtocolVectorOffset
Offset value to be added to or subtracted from the subroutine calls a protocol makes to the remote.
Signed value; can be preceded by + or – character. Default is zero.

Example:

 ProtocolVectorOffset=-$100

ProtocolDataOffset
Offset value to be added to or subtracted from the data references a protocol makes to the remote.
Signed value; can be preceded by + or – character. Default is zero.

• This group of entries is concerned with specifying how the remote works with learned IR commands. All
entries are optional, and will default as indicated when the entry is omitted.

LearnedDevBtnSwapped
Set to Y, Yes, T, True, or 1 for remotes that store the DevBtn index in the second nibble of the second
byte (rather than in the first nibble) of each learned command entry. If this entry is omitted (or set to N,
No, F, False, or 0), then the first nibble will be used.

• This group of entries is used to supply parameters fo special programming options that are unique to the JP1 r
tools. All entries are optional, and will default as indicated when the entry is omitted. (Creating entries in this
group will typically require the assistance of a JP1 expert.)

DevComb
This entry is used by the Device Combiner protocol and Fav/Scan patch to adjust internal values to match
the characteristics of the remote. If this entry is omitted, the Device Combiner protocol and Fav/Scan
patch will not be available. (Creating this entry will typically require the assistance of a JP1 expert.)

The DevComb entry is a series of numbers separated by commas. The numbers may be expressed in
decimal or hex. The entry is in the form:

 DevComb=[fav][, [comb1][, [comb2][, [comb3][, [comb4][, [comb5][, comb6]]]]]]

where each of the items in the list is optional, and the items are those as identified by the current version
of KM (v9.xx). If an item is to be omitted, the item should be left blank. Trailing blank items may be
omitted from the list.

 JP1 RDF File Specification Version 4

For example, the 15-1994's entry looks like this (note comb3 & comb6 are omitted.):

 DevComb=$7C, $683, $11FC, , $8AEF, $1259

TimeAddr
Only applicable to remotes with real-time clocks; should be omitted otherwise. Specifies the address
where IR will store the current (system) time when uploading to the remote. Must be supported by special
reset code in the remote. If omitted, the current time will not be loaded into the remote.

The TimeAddr entry is in the form:

 TimeAddr=Addr[, Format]

where
 Addr is the address where three bytes of time data are to be stored.
 Format is optional and determines the format of the time data.

Format, if present, must be set to one of the following values:
 Hex binary format (primarily for older remotes)
 BCD12 12-hour BCD with AM/PM (for remotes with a 12-hour clock)
 BCD24 24-hour BCD (for remotes with a 24-hour clock)

If Format is omitted, the default setting will be Hex.

Using the Format setting in this entry will make the RDF incompatible with programs that have not
been updated to comply with RDF specification version 4. An alternate syntax is allowed in this
case to allow for a transitional period while various JP1 programs are updated to comply with this

version of the RDF specifications.
See Transition From RDF 3 to RDF 4 section of this document for further details

SetupValidation
This entry should only be present when the RDF file contains a [SetupCodes] section, and should be
omitted otherwise. This entry is in the form:

SetupValidation=Option

where:
 Option is one of three possible settings: OFF, WARN or ENFORCE.

SetupValidation=OFF is the default, and is equivalent to omitting the entry entirely. JP1 programs will
not expect a [SetupCodes] section, but if one is present, it may be used for convenience purposes.

SetupValidation=WARN will cause the program to issue a warning to the user in the event an invalid
setup code is present, but will not require the user to change the setup code.

SetupValidation=ENFORCE will cause the program to require that the user correct all invalid setup
codes. This is useful when a remote reacts badly to invalid setup codes.

Setup code validation only takes place when a user attempts to upload to the remote or create a WAV file.
If a [SetupCodes] section is not present in the RDF file, then this entry will be ignored.

RDFVersionAddr
If present, this entry will cause a single byte RDF version number to be written into the remote image at
the address specified. The version number will be the highest RDF version number supported by the
program. This entry takes precedence over any conflicting entry that might exist in the [AutoSet]
section.

Example:

 — 13 —

 JP1 RDF File Specification Version 4

 — 14 —

RDFVersionAddr=$3FE

ExtenderVersionAddr
This entry is used only in RDF files that support an extender, and should be omitted otherwise. This entry
is in the form:

ExtenderVersionAddr=Addr1, Format1[, Addr2]

where
 Addr1 specifies the address where the major version data is located.
 Format1 defines the format of the major version data.
 Addr2 is optional and specifies the address where the minor version data is located.

Format1 determines both how the major version is stored, and how the version information is displayed
within a program. It must be set to one of the following values:
 Hex the major version is stored as a number
 Asc the major version is stored as an ASCII character

When the Hex setting is used, programs will display the value of the major version byte in decimal as the
version number. If a minor version is defined, it will be separated from the major version number by a
dot, and expressed as the decimal value of the minor version byte. If the minor version is less than 10, a
leading zero will be inserted. For example, if the major version byte is $02 and the minor version byte is
$03, the version will be displayed as “2.03”.

When the Asc setting is used, programs will display the ASCII character corresponding to the major
version byte. If a minor version is defined, it will be expressed as the decimal value of the minor version
byte. For example, if the major version byte is $42 and the minor version byte is $0E, the version will be
displayed as “B14”.

• This group of entries is specific to remotes that do not have device buttons. Devices are selec ed by scrolling t
through a list. These entries are only applicable to such remotes, and should be omitted otherwise.

SoftDev
Specifies parameters for “soft” device selection.

The SoftDev entry takes the form:

 SoftDev=Use[, [EmptyButtons][, [CountAddr][, [SeqAddr]]]]

where:
 Use specifies whether or not the remote uses soft device selection.
 EmptyButtonSettings determines if device settings are allowed to be empty.
 CountAddr is the address of a byte that holds the number of filled slots.
 SeqAddr is the address of the data area that maps the LCD display order to the slot positions.

Use is set to Y, Yes, T, True, or 1 for remotes that use soft device selection. If the remote does not use
soft device selection, the entire SoftDev entry should be omitted (or Use should be set to N, No, F,
False, or 0, and the remaining parameters omitted).

EmptyButtonSettings affects all entries in the [Settings] section that specify the DeviceButtons
section name as a list of choices, and determines if a user will be allowed to make or leave such settings
blank (“empty”). If this parameter is set to Y, Yes, T, True, or 1, the user will be allowed to have blank
entries; if omitted (or set to N, No, F, False, or 0), then, all entries must be filled with a device button
selection.

CountAddr is the address of a byte that holds the number of filled device slots. If omitted, then it is
assumed that the remote does not store this data.

 JP1 RDF File Specification Version 4

 — 15 —

SeqAddr is the start address of a series of index bytes that map the LCD display order to the device slot
positions. There is one byte per device slot; the length of this sequence is indirectly given by the number
of buttons defined in the [DeviceButtons] section. If omitted, then it is assumed that the remote does
not store this information.

As an example, the entry for the URC-7780 is:

 SoftDev=Y,Y,$2C,$A0

This signifies that the remote uses soft device selection, it permits the user to leave empty those settings
that reference device buttons, the number of filled device slots is stored at $2C and the mapping of the
LCD display order to slot positions starts at $A0.

SoftHT
Specifies how Home Theater is handled by remotes that use soft device selection. This entry is only valid
for such remotes, and should be omitted otherwise (if present it will be ignored).

The SoftHT entry is in the form:

 SoftHT=Use[, DevIndex, DevCode]

where:
 Use specifies if the remote allows Home Theater to occupy a device slot.
 DevIndex is an index referring to the Home Theater device in the [DeviceTypes] section.
 DevCode is the setup code that the remote uses internally to identify the Home Theater device.

Use is set to Y, Yes, T, True, or 1 if it is valid for the Home Theater device to be assigned to a soft device
slot. In this case, the remaining two parameters are required. If set to N, No, F, False, or 0, then Home
Theater is not a valid device selection, and the remaining parameters should be omitted.

DevIndex and DevCode are both required when Use is true. There must be an entry in the
[DeviceTypes] section that defines the Home Theater device type. The DevIndex value here is a (0-
based) index into the list of device buttons defined in the [DeviceTypes] section, and refers to the entry
defining the Home Theater device. For example, if the Home Theater device is defined in the fourth entry
within the [DeviceTypes] section, then the DevIndex value that refers to it is 3.

Note that there is a subtle difference between the Home Theater device type and all others in that the
Home Theater device can only be assigned to one device slot. The user interface on the remote keeps one
extra device slot available for the Home Theater device, so to the user it will not appear to occupy a device
slot. These restrictions are also enforced by IR.exe.

As an example, the entry for the URC-7780 is:

 SoftHT=Y,15,$3F3

This specifies that the remote allows Home Theater to occupy a soft device slot, that Home Theater is the
16th entry in the [DeviceTypes] section (0-based DevIndex is 15), and that the setup code 1011 ($3F3
in hex) is the Home Theater device.

• This group of entries defines characteristics of buttons on the remote. All entries are optional, and will default
as indicated when the entry is omitted.

Shift
Specifies the binary bit(s) that represent the primary shift button in other button key codes, and optionally,
the label programs should use when referring to the primary shift button.

 JP1 RDF File Specification Version 4

 — 16 —

The Shift entry is in the form:

 Shift=ShiftMask[,ShiftLabel]

where:
 ShiftMask specifies the bit or bits used to indicate that a key is in a shifted state.
 ShiftLabel determines the text that programs will use to identify the shifted state.

A shifted state is normally achieved by pressing the Setup (Magic, P, etc.) button before pressing the
button in question. The ShiftMask value is a single byte, and may not be 0. If there is no Shift entry
in the RDF, the following will be the default:

 Shift=$80, Shift

XShift
Specifies the binary bit(s) that represent the secondary shift button (XShift) in other button key codes, and
optionally, the label programs should use when referring to the secondary shift button.

The XShift entry is in the form:

 XShift=XShiftMask[,XShiftLabel]

where:
 XShiftMask specifies the bit or bits used to indicate that a key is in an XShifted state.
 XShiftLabel determines the text that programs will use to identify the XShifted state.

The XShiftMask value is a single byte. An XShifted state can be achieved by pressing the button in
question after pressing a special Shift key or entering a special shift mode. XShift functionality is disabled
if the XShiftMask value is 0. If there is no XShift entry in the RDF, the following will be the default:

 XShift=$00, XShift

DefaultRestriction
Defines the button restriction that should be applied to any key for which a restriction is not explicitly
defined, and takes the following form:

 DefaultRestriction= ButtonRestriction[{+,-}ButtonRestriction...]

where ButtonRestriction can be any one of the constants listed in the [Buttons] section of this
document (see details on Button Restrictions in the [Buttons] section below).

• This group of entries controls program behavior and/or specifies auxiliary files used by JP1 programs. All
entries are optional, and will default as indicated when the entry is omitted.

ImageMap
Specifies the filename of an image-map file for the remote. If omitted, no image of the remote will be
available. If the RDF applies to more than one remote, a filename for each remote may be entered,
separated by commas. Multiple filenames should be entered in the same order indicated by the name of
the RDF. (It is implied that a JPEG image of the remote will also exist; the name of the JPEG file is
specified within the image map file.)

Example:

ImageMap=URC-6820.map,URC-8820.map,URC-10820.map

 JP1 RDF File Specification Version 4

 — 17 —

PauseParams
Specifies how a pause duration is calculated and formatted for Pause special protocols defined in the
[SpecialProtocols] section.

The PauseParams entry is in the form:

 PauseParams=UserName, DataBytes, Multiplier

where:
 UserName is the name specified in the [SpecialProtocols] section.
 DataBytes specifies the format of the data as discussed below.
 Multiplier is the conversion factor from seconds to data value.

The possible entries for DataBytes are:
 1 — one data byte
 2/1 — two data bytes, only the first is used
 2/2 — two data bytes, only the second is used
 2/B — two data bytes, big-endian (high byte first)
 2/L — two data bytes, little-endian (low byte first)

When DataBytes is set to 2/1 or 2/2 the byte not used by the protocol is set so that the second byte is
always the (hex) EFC of the first byte, regardless of which of them is the actual data value.

Multiplier is expressed as a real number (including decimal point if needed). This value is a conversion
factor, and will be multiplied by the number of seconds entered by the user, and rounded to the nearest
integer value. This result then formatted per the DataBytes entry.

PauseParams entries are optional, but if present then all three parameters are required. There can be
multiple PauseParams entries provided they have different values for UserName. If an entry with a
UserName is not assigned in the [SpecialProtocols] section then the entry is ignored.

If a UserName assigned in the [SpecialProtocols] section does not have a corresponding
PauseParams entry, the parameters used by the stand-alone Pause special protocol (as supported by RM
and KM) will be assumed. This default is equivalent to:

 PauseParams=(name),2/1,10.66 (S3C8 remotes only)
 or
 PauseParams=(name),2/1,16 (all other remotes, including S3C8+)

As an example, assuming both are properly defined in the [SpecialProtocols] section, the
[General] section could contain the entries:

PauseParams=PauseA,2/1,10.66
PauseParams=PauseB,2/B,1000

The first entry applies to the stand-alone RM/KM Pause special protocol, while the second is for a Pause
special protocol included in an extender. To be activated, all the required elements of a Pause protocol as
defined in the [SpecialProtocols] section must be present in the remote. Once activated, the user
may choose to use it. So, in this example, it would be possible that one or both Pause protocols are
activated. Regardless of which one the user chooses, the matching PauseParams entry will determine
how the timing values are calculated and formatted.

Please refer to the [SpecialProtocols] section of this document for further examples and a more
detailed discussion of how to use the PauseParams entry.

 JP1 RDF File Specification Version 4

RDFSync
Used to keep RDFs in sync with programs. Should not be omitted. For RDF files compliant with this
specification, the entry should be:

 RDFSync=4

Programs compatible with this RDF specification will also allow use of RDF files with RDFSync=3.
A special syntax is allowed in this case to allow for a transitional period while various JP1 programs
are updated to comply with this version of the RDF specifications.

See Transition From RDF 3 to RDF 4 section of this document for further details.

StartReadOnlySettings
Specifies the position in the list of entries in the [Settings] section of the first setting to be read-only.
If omitted then no entries are read-only. Note that “read-only” as used here means that the user cannot
edit the value displayed in the Other Settings panel of the IR.exe General page.

As an example, an entry of StartReadOnlySettings=12 causes the 12th and subsequent entries in
the [Settings] section to be read-only.

The InitValue and Inverted parameters of an entry in the [Settings] section still determine the
value assigned when memory is cleared.

 — 18 —

 JP1 RDF File Specification Version 4

 — 19 —

[Extender] section

The [Extender] section is used to define some of the features of an extender, and is only present in RDF files that
are used with extenders. The presence of this section (even if empty) will indicate to a program that the RDF is for
use with an extender only.

Currently, only one entry type is defined for this section, but more may be added as needed.

DeviceSetup
Defines a setup code, type and name for a device that is normally resident in the extender.

• NOTE: This entry is currently used only by the Extender Code Calc (ECC) spreadsheet, and will probably be
considered obsolete at some point, but should be maintained until the ECC spreadsheet can either be retired,
or modified to comply with the [SpecialProtocols] sec ion used by other JP1 programs. t

The DeviceSetup entry is in the form:

 DeviceSetup=DevType/SUCode, SPName

where:
DevType is one of the DeviceTypes defined for the remote in the [DeviceTypes] section.
SUCode is a 4-digit decimal setup code.
SPName is the name given to the special protocol used by the device.

There can be any number of DeviceSetup entries in this section, though each should be unique. The
names of special protocols are standardized across all RDF files.

For example, the [Extender] section looks like this for the 15-2133 Extender 1:

 [Extender]
 DeviceSetup=VCR/1800, ToadTog
 DeviceSetup=TV/1106, LDKP
 DeviceSetup=TV/1104, Pause
 DeviceSetup=TV/1103, DSM
 DeviceSetup=TV/1101, Multiplexer

 JP1 RDF File Specification Version 4

[SpecialProtocols] section

• NOTE: The Special Protocols tab in the IR program will not be displayed if this section is emp y or missing. t

This section contains entries that define special protocols such that a JP1 program is able to provide a friendly user
interface for the special protocol. The entries are in one of two forms:

 SpecialProtocolName=[DevName/SUCode:][-]PID|XPID[(UserNameList)]

 or

 SpecialProtocolName=Internal:IDNum[(UserNameList)]

where:
SpecialProtocolName must be one of the recognized standard names of special protocols.
DevName/SUCode is an optional device type and setup code (see below).
PID is the 4-digit hexadecimal Protocol ID number for the special protocol (without a “$”).
XPID is a value that includes the PID and data to uniquely identify a specific protocol version.
UserNameList is a comma-separated list of names enclosed within parenthesis.
Internal: is a literal value.
IDNum is a serial ID number that identifies a special protocol built into an extender.

The first syntax form is the one that is in predominant use. The second syntax form is only used in special
circumstances (see discussion later in this section). The order in which the entries appear in this section is not
important. The minimum required syntax is:

 SpecialProtocolName=PID

This form will be discussed first.

Using any other form of this entry will make the RDF incompatible with programs that have not been
updated to comply with RDF specification version 4. An alternate syntax is allowed in this case to allow for
a transitional period while various JP1 programs are updated to comply with this version of the RDF

specifications. See Transition From RDF 3 to RDF 4 section of this document for further details

• NOTE: The Pause special protocol was not supported with a user-friendly interface by IR program versions
prior to version 8.

SpecialProtocolName must be one of the following standard names in order for programs to provide a special
interface for the special protocol:

 DSM, LDKP, UDSM, ULDKP, ToadTog, Multiplex, Pause

Use of other names is allowed, but no special user-friendly interface will be provided. This list of special protocol
names reflects those that are supported by special programming within some JP1 tools. These standard names
have the following meanings:
 DSM................ Device-Specific Macros, as implemented within an extender
 LDKP............... Long/Double Key Press, as implemented within an extender
 UDSM.............. Un-extended Device-Specific Macros (stand-alone version)
 ULDKP............. Un-extended Long/Double Key Press (stand-alone version)
 ToadTog.......... TOAD-Toggle, all versions (TOAD = Toggle-Only-Activated-Device)
 Multiplex Device Multiplexer, all versions
 Pause.............. Pause protocol, all versions

PID is the 4-digit hexadecimal Protocol ID number that is assigned to the special protocol. It is expressed here
without a leading “$” even though the value is in hexadecimal. (The optional preceding minus sign [-] may only
be used in RDF version 4 syntax.)

 — 20 —

 JP1 RDF File Specification Version 4

 — 21 —

With this information, the JP1 program is prepared to provide a user interface for the special protocol. However,
before the user interface is activated, the program verifies that all required elements are present. First, the
upgrade protocols are checked to verify that a protocol using the specified PID is present. Next, the device
upgrades are checked to see if one can be found that uses the specified protocol. Once these are found to be
present, the user interface for that special protocol is enabled. If only the device upgrade is found, then the user
interface will still be enabled, but the user will be warned that the protocol needs to be installed.

As an example, here is the [SpecialProtocols] section for one of the 15-1994 extenders:

 [SpecialProtocols]
 DSM=01FC
 LDKP=01F9
 Multiplex=01FE
 Pause=01FB
 ToadTog=0181

• The syntax extensions discussed below are incompatible with programs not prepared to accept RDF version 4
syntax.

In some circumstances, an extender may be implemented in such a way that no protocol upgrade is required for a
special protocol. In this case, when the program attempts to verify that all elements are installed, it will not find a
protocol upgrade, and will therefore prompt the user with a warning message to install the protocol upgrade. To
prevent the program from issuing the warning message, precede the PID with a minus sign (dash):

 DSM=-01FC

Some extenders embed the entire processing of a special protocol into the extender itself, and neither the protocol
upgrade nor the device upgrade will be present. Since the program will be unable to find either element, it will not
enable the user interface for the special protocol. An optional syntax is provided for this case, where the entry will
specify the device type and setup code that the extender expects using the DevName/SUCode option.

 SpecialProtocolName=DevName/SUCode:PID

DevName must be one of the device names defined in the [DeviceTypes] section. If a name in that section is a
multiple one with parts separated by a forward slash character, then any one part may be used as the name, but
not both together. For example, if the device is defined as CBL/SAT, DevName may be either CBL or SAT, but not
CBL/SAT.

SUCode is the setup code number that the extender uses for the special protocol, expressed in decimal.

As an example, the DSM entry for the URC-6131 extender uses this option to allow the TV device setup code 1103
to be used for the device-specific macro special protocol:

 DSM=TV/1103:-01FC

In the above example, the program will still enable the user interface for the DSM special protocol even though
there is no device upgrade present for TV/1103. Note that the optional minus sign preceding the PID is also used
here because a protocol upgrade for PID 01FC is not present.

UserNameList is an optional part of the entry, and is used to rename the special functions performed by a
special protocol. This is useful when an RDF is set up to allow for use of more than one copy of a specific special
protocol, and allows the program to display a different name for each copy. This part of the entry takes the form:

 [(Name1[, Name2[, Name3[…]]])]

Most special protocols only implement a single function, but some implement two or more functions. The entries in
UserNameList reflect the number of functions, i.e., a special protocol with a single function would have a single
name in the list, whereas one that implements two functions would have two names in the list. Where more than

 JP1 RDF File Specification Version 4

 — 22 —

one function exists, the entries in the list will be used in the order shown in the list of default function names
shown below.

 DSM special protocolDSM
 LDKP special protocolLKP, DKP
 UDSM special protocolDSM
 ULDKP special protocolDSM, LKP, DKP
 ToadTog special protocolToadTog
 Multiplex special protocolMultiplex
 Pause special protocolPause

As an example, if a special protocol author wished to implement two different ToadTog protocols and allow them to
be active in the remote at the same time, the user would experience difficulty within a JP1 program in identifying
which one to use, since both would be named “ToadTog”. If the RDF file contained the following entries, then the
user would see two different names within the program:

 ToadTog=0181 (ToadTog1)
 ToadTog=0182 (ToadTog2)

The above example illustrates the case where the two special protocols are entirely separate. Both the device and
protocol upgrades must be present in each case for the special protocol user interface to be activated. If only one
of the two has the upgrades present, then it will be the only one activated. The renaming of the functions still
takes effect, however, so if the second one is the only one activated, then only “ToadTog2” will be available.

If the special protocol author chose to implement the two ToadTog protocols so that both ToadTogs used only a
single protocol upgrade, then the entries could look like this:

 ToadTog=VCR/1800:0181 (ToadTog1)
 ToadTog=VCR/1801:0181 (ToadTog2)

In this case, it is necessary to specify the device type & setup code so that the program will be able to associate
the names with the correct device upgrades. While this is a perfectly legitimate way to make these entries, it does
have the disadvantage that the user interface for both will be activated even if the device upgrades are missing.

The UserNameList need not always be used to differentiate between multiple special protocols of the same type.
It is valid to use the list if it is desired to simply rename the default function names. For example:

 LDKP=01F9 (LongKP,DblKP)

Another situation where it is useful to define more than one instance of a special protocol occurs with the Pause
special protocol. A user might find it useful to use either the built-in version supplied with an extender or the
stand-alone version. This is often the case because each provides a different range of pause timings. This is
defined in a manner similar to the above examples, but since both use different protocol upgrades with the same
PID, only one may be installed at a time.

XPID (rather than PID) is used in a situation such as just described to give the JP1 program a way to identify
which of two (or more) protocol upgrades is present. This is especially important with the Pause special protocol
because the program will need to know how to encode the desired time interval based on which protocol executor
is in use.

The XPID is an eight-digit hexadecimal number defined as follows:

 PPPPXXYY

where
 PPPP is the 4-digit PID of the protocol.
 XX is a zero-based offset that points to one of the bytes in the protocol executor code.
 YY is the value of the byte pointed to by XX that must match for the protocol to be recognized.

 JP1 RDF File Specification Version 4

 — 23 —

Going back to the example of the two different Pause protocols, the RDF file would have entries like these:

 Pause=01FB07A1 (PauseEXT)
 Pause=01FB07B3 (PauseRMKM)

The first entry uses an XPID value of 01FB07A1, meaning the PID of the protocol upgrade is $01FB, and that the
8th byte of the protocol executor code must be $A1 to match this entry. Similarly, the second entry specifies that
the PID of the protocol upgrade is also $01FB, and that the 8th byte of the protocol executor code must be $B3 to
match this entry. Assuming that the extender’s built-in Pause special protocol matches the first entry, and that it is
the one currently installed, the program would activate the Pause interface and present the name “PauseEXT” to
the user. If instead the stand-alone version were found to be installed, then the user would see only the name
“PauseRMKM”.

So far, so good. However, the Pause special protocol has a unique requirement in that the JP1 program still needs
knowledge of how to encode the pause interval for each of the different versions. This is done with matching
entries made in the [General] section of the RDF file, using the PauseParams entries. (See [General]
section of this document for syntax discussion.) In the example above, the following entries would be needed:

 [General]
 PauseParams=PauseEXT,2/B,1000
 PauseParams=PauseRMKM,2/1,16

Note that the names to the right of the equals sign match the names supplied in the UserNameList of the
example Pause entries above. If the UserNameList were omitted, then the default name (Pause) would be used
in the PauseParams entry. The following entries would be equivalent to the previous example, except the default
name would be used instead of “PauseRMKM”:

 [General]
 PauseParams=PauseEXT,2/B,1000
 PauseParams=Pause,2/1,16

 [SpecialProtocols]
 Pause=01FB07A1 (PauseEXT)
 Pause=01FB07B3

Also note that, strictly speaking, the second PauseParams entry is not required in either example, since the
default values assumed by the JP1 program are correct for the stand-alone Pause protocol.

• NOTE: The following alternate syntax for special protocols entries only applies to extenders specifically written
to use this form. As of this writing, only the URC-7780/7781 extender uses this syntax.

An extender may be written in such a manner that the special protocol functions are embedded within the extender
itself, and do not use a protocol or device upgrade. The required functions are accessed via a specially encoded
macro that the extender recognizes, rather than with keymoves as is normally the case. Such internal special
protocols are only possible for remotes that have the entry:

 AdvCodeBindFormat=LONG

in the [General] section of the RDF file.

These types of special protocol functions are accessed by an ID number that specifies the function. The range of
acceptable ID numbers depends upon the type of macro encoding used by the remote, which is defined in the
[General] section of the RDF file with the MacroCodingType entry. Valid ID number ranges are:

 0 to 5, when MacroCodingType=1
 0 to 4, when MacroCodingType=2

 JP1 RDF File Specification Version 4

 — 24 —

Here is an example of the entries for this type of extender:

 [SpecialProtocols]
 DSM=Internal:0
 LDKP=Internal:1
 Multiplex=Internal:2
 ToadTog=Internal:3
 Pause=Internal:4

The alternate syntax can be intermixed with the normal syntax as applicable. For example, two different DSM
special protocols, one internal (DSM1), and one using a protocol upgrade (DSM2), could be defined:

 DSM=Internal:0 (DSM1)
 DSM=01FC (DSM2)

 JP1 RDF File Specification Version 4

 — 25 —

 [Settings] section

The [Settings] section contains information about remote-specific settings defined in the remote’s data storage
area (usually in the addresses below $100). The entries are in the form:

 Title=ByteAddr.BitNo.NumBits.InitValue.Inverted [(OptionList) | SectionName]

where:
Title is the name of the setting that programs such as IR will display.
ByteAddr is the address of the byte that contains the information.
BitNo is the starting bit position of the data within the byte (0-based).
NumBits is the number of bits that make up the entry.
InitValue is the value to assign to the bits when the memory is cleared.
Inverted determines whether the value must be complemented.
 (A non-zero value means that it’s inverted.)

The remainder of the line is optional. If specified, then it will be used to populate a combo list that IR will use for
user input. The OptionList, if specified, is enclosed in parentheses and contains a semicolon-separated list of
values. The SectionName can be the name of any RDF section, such as DeviceButtons.

For example, the VPT device for the 15-1994 remote is defined as:

 VPT Device=$018.7.8.0 DeviceButtons

and the VPT status is defined as:

 VPT Status=$019.3.1.1 (On;Off)

Note that the VPT status could also be defined as:

 VPT Status=$019.3.1.0 (Off;On)

The only functional difference between the two involves the memory clear operation. When the buffer is cleared,
the first value in the list will be the one used to set the byte. Also, all the bytes are normally set to $FF when the
buffer is cleared, but bytes that contain non-inverted status information will be initialized to $00.

See also the StartReadOnlySettings entry in the [General] section.

 JP1 RDF File Specification Version 4

 — 26 —

[Checksums] section

The [Checksums] section contains one or more entries formatted in one of the following ways:

 +CkAddr:BeginAddr..EndAddr

 ^CkAddr:BeginAddr..EndAddr

where:
+ is used to specify that the checksum is generated by adding numbers.
^ is used to specify that the checksum is generated by XORing numbers.
CkAddr is the address where the computed checksum byte is stored.
BeginAddr is beginning of the range.
EndAddr is the end of the range.

The complement of the computed checksum is always stored in the byte at CkAddr+1.

For example, the entry:

 +$000:$002..$03A

means that a checksum computed by adding the values from memory locations $002 to $03A is stored at $000,
and its complement is stored at $001. Spaces are not allowed in checksum specifications.

 JP1 RDF File Specification Version 4

 — 27 —

[FixedData] section

• Note: The [FixedData] and [AutoSset] sections are quite similar in function. Which should be used in any
given circumstance depends upon the functionali y desired. [FixedData] will prompt the user before changing t
any data, while [AutoSet] will change the data without prompting the user. [FixedData] is sometimes used in
matching an RDF file with downloaded data, while [AutoSet] is not.

The [FixedData] section contains information about data that is considered to be invariant. If a remote’s data
storage area contents are found to differ with the values specified in this section, a warning message will be
displayed to the user asking if the values should be corrected to match those specified here.

This section is formatted as follows:

 [Addr=]Value...

where:
Addr is the address of the data.
Value is the data that is stored there.

Addr is optional. It will initially default to 0 if not specified, but will increase by 1 for each byte specified until a
new address is specified. In this section and all others described below, spacing is irrelevant (except that a blank
line indicates the end of the section). This means that multiple addresses can be placed on a line, or you can place
one on each line. Commas and semicolons are considered whitespace, so there's no difference between:

 $005=50,51,52,53

and

 $005 = 50 51; $007 =52
 $53

How you format these is a matter of personal preference.

In certain circumstances, the fixed data is used to help identify which RDF applies to a remote. For example, many
older JP1 remotes have a split signature where the RDF filename only specifies the first four characters of the
signature. These remotes store the second four-character part of the signature at another location in the EEPROM.
When IR downloads the EEPROM contents of such a remote, and finds more than one RDF file applies (based on a
match of the first four characters of the signature), it will then examine the fixed data in the RDF to see if it
matches what was downloaded. For this reason, remotes with split signatures should always have the second part
of the signature identified in the [FixedData] section.

 JP1 RDF File Specification Version 4

 — 28 —

[AutoSet] section

The [AutoSet] section contains information about data that is forced to be constant. If a remote’s data storage
area contents are found to differ with the values specified in this section, the values will be corrected to match
those specified here without notifying the user.

This section is formatted in the same manner as the [FixedData] section; see above.

• Note: Unlike data in the [FixedData] sec ion, values specified in this section do not play any part in matching t
an RDF file with a remote.

 JP1 RDF File Specification Version 4

 — 29 —

[StaticUpgrades]

• The [StaticUpgrades] section is retired, and no longer in use. Do not include this section in any RDF file.

The intended functionality of this section was never documented, and seems to have been only partially
implemented in IR.exe. It appears that this was an early attempt at providing a means to hide an extender
activation upgrade and protocol from the remote so that IR could automatically install it when needed. It is not
clear that it was ever tested or used in an RDF file.

The only example of the intended syntax is found as a comment in the IR.exe source code:

 Device=TV:1800@$692..$694,Protocol=$180[@$695..$6BF]

This section is officially retired and should not be present in any RDF file.

 JP1 RDF File Specification Version 4

 — 30 —

[DeviceTypes] section

The [DeviceTypes] section contains entries in the form:

 DevType[=MapNum[, DevTypeNum]]

where:
DevType is the name of the device type.
MapNum is the number of the button map that is associated with this type of device.
DevTypeNum is the (0-based) number used by the remote that corresponds to the DevType.

There should be an entry for each device button listed in the [DeviceButtons] section, and these entries must
be in the same order. If fewer entries are made in this section than in the [DeviceButtons] section, then the
last device type entry will apply to all remaining device buttons.

DevType is short description of the type of device(s) that the device button supports. For example, CBL/SAT
might be used to describe the device type supported by a remote’s CBL and SAT device buttons. A DevType can
appear more than once in this section in order to define the default device type for each device button.

DevTypeNum is the number (device index) used internally by the remote to reference the device type. If a
TypeAddr is specified in the [DeviceButtons] section, then DevTypeNum is a 16-bit number where the high-
order byte contains the value to be placed at the address specified by TypeAddr when a device of that type is
chosen. If TypeAddr is not specified, then only the low-order byte is significant.

If MapNum is omitted then it will default to -1, effectively disabling mapping for that device type. If specified, the
number must correspond with one of the entries in the [ButtonMaps] section.

If DevTypeNum is omitted, it will initially default to 0 and increase by $0101 for each subsequent entry.
(Remember, the high-order byte will be ignored if TypeAddr is omitted.)

• Note that entries in this section and entries in the [DeviceButtons] section MUST be in the same order.

• Every device type defined in this section must be assigned to a standard device in the [DeviceTypeAliases]
section.

On the left is an example of a typical [DeviceTypes] section where DevTypeNum is omitted, and on the right is
an equivalent section where DevTypeNum is expressed explicitly. Note that both sections produce the same result.

 [DeviceTypes] [DeviceTypes]
 Cable = 0 Cable = 0,0
 TV = 1 TV = 1,1
 VCR/DVD = 2 VCR/DVD = 2,2
 CD = 3 CD = 3,3
 Audio = 3 Audio = 3,4

The [DeviceTypes] section for the URC-7070 repeats device types and uses 16-bit DevTypeNum values, and
looks like this:

 [DeviceTypes]
 Cable/SAT = 0,$0000
 TV = 0,$0101
 Cable/SAT = 0,$0000
 VCR/DVD = 1,$0202
 CD/Audio = 1,$0303
 CD/Audio = 1,$0303
 CD/Audio = 1,$0303
 VCR/DVD = 1,$0202

 JP1 RDF File Specification Version 4

 — 31 —

 [DeviceTypeAliases] section

The [DeviceTypeAliases] section assigns each of the standard JP1 device categories to a particular device
type in the remote. Each of the device types specified in the [DeviceTypes] section should also be listed in this
section. This information is used by RM and other programs to make automatic device type translations across
different remotes. For example, if a user creates a PVR upgrade for a 15-1994, and then another user changes
the upgrade to a different remote, this data determines which device type will be assigned.

Each of the 16 standard JP1 device categories should be assigned to a device type in this section. If the remote
has an OEM mode, the OEM Mode standard category should also be assigned.

The list of standard JP1 device categories is:

 Cable, TV, VCR, CD, Tuner, DVD, SAT, Tape, Laserdisc, DAT, Home Auto,
 Misc Audio, Phono, Video Acc, Amp, PVR, OEM Mode (where applicable)

Entries in this section are of the form:

 DeviceTypeName = Category1, Category2, …

where:
 DeviceTypeName is one of the device names listed in the [DeviceTypes] section.
 CategoryN is one of the standard JP1 device categories listed above.

For example, the section for the 15-1994 looks like this:

 [DeviceTypeAliases]
 Cable = Cable, SAT, Video Acc
 TV = TV
 VCR/DVD = VCR, DVD, Tape, Laserdisc, DAT, PVR
 CD = CD, Home Auto, Phono
 Audio = Tuner, Misc Audio, Amp

 JP1 RDF File Specification Version 4

 [DeviceButtons] section

There should be an entry for each device button on the remote. The order in which they are listed in this section is
not important, but it does affect the order of the entries in the [DeviceTypes] section.

• Note that entries in this section and entries in the [DeviceTypes] section MUST be in the same order.

Each entry in the [DeviceButtons] section is formatted as follows:

 ButtonName=HiAddr LoAddr[TypeAddr][, SUCode]

HiAddr and LoAddr contain the addresses to place the hi-order and lo-order device data (respectively) for each
button. (The device data stored in these locations contains both the setup code and device type, and sometimes a
bit that is part of the protocol ID.)

The TypeAddr is optional and should be specified only if the remote needs to store additional device type
information for each button (mostly used on older 6805 and 740 remotes).

SUCode is optional, and specifies a default setup code for the device button. The setup code number is used to
assign a default setup code to the device button when a new remote image is created without downloading from
the remote first.

An entry using SUCode (default setup code) may make the RDF incompatible with programs that have not
been updated to comply with RDF specification version 4. An alternate syntax is allowed in this case to
allow for a transitional period while various JP1 programs are updated to comply with this version of the

RDF specifications. See Transition From RDF 3 to RDF 4 section of this document for further details

• Warning: An RDF that contains a ButtonName entry that omi s TypeAddr but includes SUCode should not be t
used with any version of IR.exe prior to version 8 00, or with versions of RemoteMaster prior to v1.89 in RMIR .
mode. Earlier versions of these programs will interpret the third parameter as TypeAddr, resulting in
corruption of the remote memory image. Because the TypeAddr parameter must not be present in mos cases, t
it is strongly suggested that the alternate syntax detailed in the Transition From RDF 3 to RDF 4 section of this
document be used when SUCode is provided, until such time as older versions of these programs are no longer
in common use.

The ButtonName for a device button cannot contain any of the following characters (and may not be quoted):

 () , ; =

(These characters are not permitted in any of the string values in any of the RDF sections unless quoted strings are
specified.)

The ButtonName specified in this section MUST be spelled the same way in the [Buttons] section.

Some remotes support extra devices for which there is no physical button on the remote. These extra devices can
be further divided into two categories:

Devices for which a button code exists even though the remote has no physical button — these should be
treated as if the device button actually existed. A ButtonName defined here should also be defined in the
[Buttons] section. It may be helpful to use a button name that helps the user to understand that the
button does not actually exist.

Devices for which a button code does not exist — in this case, any suitable ButtonName may be used,
and the button name will not exist in the [Buttons] section.

 — 32 —

 JP1 RDF File Specification Version 4

 — 33 —

Here is an example of the [DeviceButtons] section for the Radio Shack 15-2116 remote, where the
ButtonNames db-09 through db-14 are extra devices (no physical button or button code exists for these
devices):

 [DeviceButtons]
 TV = $00A $00B
 VCR = $00C $00D
 CBL = $00E $00F
 SAT = $010 $011
 CD = $012 $013
 DVD = $014 $015
 AUX = $016 $017
 AUDIO = $018 $019
 MYSYS = $01A $01B
 db-09 = $01C $01D
 db-10 = $01E $01F
 db-11 = $020 $021
 db-12 = $022 $023
 db-13 = $024 $025
 db-14 = $026 $027

Here is another example, using default setup codes, for the URC-8550:

 [DeviceButtons]
 SAT = $026 $01E $02E,$1C7
 TV = $027 $01F $02F,$025
 VCR = $028 $020 $030,$048
 CD = $029 $021 $031,$09D
 AMP = $02A $022 $032,$10D
 TUNER = $02B $023 $033,$0BD
 AUX1 = $02C $024 $034,$00A
 AUX2 = $02D $025 $035,$01D

 JP1 RDF File Specification Version 4

 [Buttons] section

The [Buttons] section contains a list of the button names used by the remote, and defines the button code (“key
code”) number and other characteristics of the button.

Entries are in the form:

 [GenericName:]ButtonName[=BtnCode[:ButtonRestriction[{+,-}ButtonRestriction...]]]

Button names may be entered in any order, with the order possibly having an effect on where it will show up on
the list of buttons within programs. When more than one button is defined on a line, each entry should be
separated with a comma.

If a button name or generic name contains a space, or any of the following characters:

 () , ; =

the name should be enclosed in either single- or (preferred) double-quotes. In general, it is a good idea to use
quotes on any name that contains characters other than letters or numbers, for future compatibility in the event
the RDF specification is modified to use other characters for special purposes.

• Note that but on names for the device buttons and multi-macro buttons cannot be quoted, and therefore may t
not use any o the special characters no ed above. f t

Shifted button codes (>$80) can also be specified in order to allow customized names to be given to shifted keys.

The optional GenericName parameter is used by RM to allow for easier conversion between remotes and to
reliably import KM upgrades, but is not yet used by IR. A generic name need not be entered if the button name
already matches one of the standard generic names, shown in the list below. Case is not significant, and only the
names in the list below are valid. Other text values for the GenericName are invalid, and should not be used as
they may cause unpredictable results.

An example will help to illustrate the importance of supplying the GenericName. In the case where a user obtains
an upgrade that was created for the 15-1994, and wants to change the upgrade for use with a URC-8820, RM will
have to re-map the buttons from the 15-1994 to the URC-8820. The 15-1994 has a button named DISPLAY, while
the URC-8820 has a button named INFO. If the URC-8820 RDF file defines the INFO button as:

 display:info=$26

Standard Generic Button Names
(Where appropriate, the generic names below are shown quoted)

“vol up” “up arrow” pause “next track” rear setup
“vol down” “down arrow” rewind “prev track” phantom1 light

mute “left arrow” “fast fwd” “shift-left” phantom2 theater
“channel up” “right arrow” stop “shift-right” phantom3 macro1
“channel down” select record “pip freeze” phantom4 macro2

power sleep exit slow phantom5 macro3
enter “pip on/off” surround eject phantom6 macro4

“tv/vcr” display input “slow+” phantom7 learn1
“prev ch” “pip swap” “+100” “slow-“ phantom8 learn2

menu “pip move” “fav/scan” x2 phantom9 learn3
guide play “device button” center phantom10 learn4

When creating or updating an RDF file for a remote already supported by KM, care should be taken to assign the
same set of standard generic names used by KM so that RM can properly import KM upgrades.

If no BtnCode is specified then the button code number will be one higher than that of the previously defined
button, and the button restriction will be the same as that of the previously defined button. (For the first entry,
the BtnCode will default to 1 and the button restriction will default to DefaultRestriction as defined in the
[General] section.) If a BtnCode is defined but the button restriction is omitted, then the restriction will be

 — 34 —

 JP1 RDF File Specification Version 4

 — 35 —

DefaultRestriction. (If no DefaultRestriction is specified in the [General] section, then the button
will be unrestricted.)

A button restriction applies to the button as it is defined. (See the Button Restrictions listed at the end of this
section for a list of the button restriction constants.) For example, consider a button defined as:

 Bar=$83

Even though this button’s BtnCode has its shift bit set (the high-order bit), you would restrict it from having a key
move assigned to it by adding the restriction MoveBind (not ShiftMoveBind).

Note that the Shift and XShift versions of the button restriction constants restrict the ability of the user to associate
shifted states with the button in question. Depending on the button’s definition, however, a shifted restriction may
be superfluous. Given the example in the above paragraph, ShiftMoveBind is assumed because the button
already has its shift bit set. As such, shifting the button would have no effect. (ShiftBind+ShiftData is
assumed for buttons whose shift bits are already set in their BtnCode.)

It is legal to define 2 buttons with different BtnCode values that can resolve to the same BtnCode. For example,
the following is legal:

 Foo=$03, Bar=$83

even though SHIFT-Foo has the same BtnCode as Bar. It is also legal to have 2 buttons with the exact same
BtnCode, but in that case they should be restricted so they will not show up on the same list. For example:

 Foo=$03:AllMoveBind, Bar=$03:All-MoveBind

would be legal, but:

 Foo=$03:MoveBind, Bar=$03:All-MoveBind

would be illegal because both Foo and Bar would still be listed in the KeyMove binding ComboBox. (In this case, if
IR saw a KeyMove bound to BtnCode $03, it wouldn’t know which name to attach to it.)

Just as it is legal to have two different button names with the same BtnCode (as long as they are properly
restricted), it is also legal to have the same button name associated with two different BtnCode values. Again,
this requires that the buttons be restricted such that they never appear on the same list, but there are several
remotes (mostly older P8-style) that use different BtnCode values for the same button based on its use. In other
words, the following is legal:

 Foo=$83:All-MacroData, Foo=$C3:All-MacroBind

In this case, Foo would show up in the macro binding ComboBox and in the macro key list, but selecting Foo from
the ComboBox would bind a macro to $C3 and putting Foo into the macro would use $83.

The DefaultRestriction entry in the [General] section specifies the button restriction that should be
applied to any key for which a restriction is not explicitly defined (see [General] section above).

 JP1 RDF File Specification Version 4

Button Restriction Constants
MoveBind Key moves can’t be bound to this button in its unshifted state

ShiftMoveBind Key moves can’t be bound to this button in its shifted state
XShiftMoveBind Key moves can’t be bound to this button in its xshifted state

MacroBind Macros can’t be bound to this button in its unshifted state
ShiftMacroBind Macros can’t be bound to this button in its shifted state
XShiftMacroBind Macros can’t be bound to this button in its xshifted state

LearnBind Learned commands can’t be bound to this button in its unshifted state
ShiftLearnBind Learned commands can’t be bound to this button in its shifted state
XShiftLearnBind Learned commands can’t be bound to this button in its xshifted state

MoveData Key moves can’t contain this button in its unshifted state
ShiftMoveData Key moves can’t contain this button in its shifted state
XShiftMoveData Key moves can’t contain this button in its xshifted state

MacroData Macros can’t contain this button in its unshifted state
ShiftMacroData Macros can’t contain this button in its shifted state
XShiftMacroData Macros can’t contain this button in its xshifted state

TMacroData Timed macros can’t contain this button in its unshifted state
ShiftTMacroData Timed macros can’t contain this button in its shifted state
XShiftTMacroData Timed macros can’t contain this button in its xshifted state

FavData Fav lists can’t contain this button in its unshifted state
ShiftFavData Fav lists can’t contain this button in its shifted state
XShiftFavData Fav lists can’t contain this button in its xshifted state
AllMoveBind Key moves can’t be bound to this button regardless of shift state
AllMacroBind Macros can’t be bound to this button regardless of shift state
AllLearnBind Learned commands can’t be bound to this button regardless of shift state
AllMoveData Key moves can’t contain this button regardless of shift state
AllMacroData Macros can’t contain this button regardless of shift state
AllTMacroData Timed macros can’t contain this button regardless of shift state
AllFavData Fav lists can’t contain this button regardless of shift state

Bind Nothing can be bound to the button in its unshifted state
ShiftBind Nothing can be bound to the button in its shifted state
XShiftBind Nothing can be bound to the button in its xshifted state

Data The button can’t be contained in anything in its unshifted state
ShiftData The button can’t be contained in anything in its shifted state
XShiftData The button can’t be contained in anything in its xshifted state

Shift Nothing can be bound to the button, nor can it be contained in anything in its shifted state
XShift Nothing can be bound to the button, nor can it be contained in anything in its xshifted state
AllBind Nothing can be bound to the button regardless of shift state
AllData Nothing can contain this button regardless of shift state
All The button cannot be used anywhere, in any shift state

A button restriction defined as:

 MoveBind+XShiftMoveBind

will prevent a key move from being assigned to a button in its unshifted or xshifted states, but it will allow all other
uses of the button (including being able to assign a key move to it in its shifted state). A restriction of:

 All-MoveBind

will allow the button to be used only to bind key moves to. (In this case, the minus operator negates the specified
restriction.)

 — 36 —

 JP1 RDF File Specification Version 4

 — 37 —

[MultiMacros] section

The [MultiMacros] section contains a list of buttons that can contain multiple macros, one of which fires (in
order) each time the button is pressed. It contains entries in the form:

 ButtonName=Address1 [, Address2]

where:
ButtonName is the name of the button that can contain multiple macro entries. This name must match
the name specified in the [Buttons] section, and may not be a quoted name.

If only Address1 is specified, then the byte at that address will contain the number of macros in the high-order
nibble, and the number of the next macro to fire in the low-order nibble. (Both values are encoded.) If Address1
and Address2 are both specified, then the first address will contain the number of macros assigned, and the
second address will contain the number of the next of the next macro to fire. (Again, both are encoded.)

Note that this section must be defined AFTER the [Buttons] section, and should be omitted entirely if the remote
does not support MultiMacros.

 JP1 RDF File Specification Version 4

 — 38 —

[ButtonMaps] section

The [ButtonMaps] section reflects the remote’s internal button maps, and is in the form:

 MapNum=BtnCodeList

where:
MapNum is a button map number referred to in the [DeviceTypes] section.
BtnCodeList is a list of button code numbers, some of which can be enclosed in parentheses to indicate
that they are mapped to the same bit. Each entry (button codes surrounded by parentheses are
considered a single entry) corresponds to one mapping bit.

Each remote contains an internal set of button maps. A button map is a list of button codes for buttons that may
be included within a device upgrade. Button code numbers in this section may be expressed in hex or decimal,
though hex is preferred. (Creating these entries will typically require the help of a JP1 expert.)

Here is an example of a MapNum entry:

0 = ($1F, $15, $16, $17, $19, $1A, $1B, $1C, $1D, $1E), ($04, $05, $08), ($06, $07)
 $03, $14, $13, $36, $37, $31, $32, $33, $34, $35, $38, $2A, $2B, $18, $20, $0B,
 $0C, $0D, $10, $0F, $0E, $27, $26, $30, $2D, $2E, $2F, $25, $28, $39

This entry is for map number 0. The first group of button codes in parenthesis is for the numeric keys (0, 1, 2, 3,
4, 5, 6, 7, 8, 9), the second group is for the volume keys (volume up, volume down & mute), and the third group is
for the channel select keys (channel up & channel down). These three groups each use one bit in the upgrade
bitmap bytes. The remainder of the button codes listed each use one bit in the upgrade bitmap bytes.

 JP1 RDF File Specification Version 4

 — 39 —

 [DigitMaps] section

Almost all JP1 remotes contain an internal table of digit maps. A digit map is a list of commonly used hex function
codes for the digit buttons. Using these digit maps allows device upgrades to be smaller since the functions for all
ten digit keys can be defined with a single byte of data.

This section contains a space-delimited list of pointers to a table of digit maps internal to the JP1 programs. The
pointers are usually expressed as decimal values, and the list may span more than one line. Here is an example of
a [DigitMaps] section:

[DigitMaps]
072 053 038 047 094 092 003 001 090 046 077 086 021 011 087 075
059 058 064 391 392 187 188 146 083 239 240 126 034 397 030 291
063 334 069 093 227 228 219 220 294 205

Creating these entries will typically require the help of a JP1 expert, and is beyond the scope of this document.

 JP1 RDF File Specification Version 4

 — 40 —

[Protocols] section

The [Protocols] section lists the PID (Protocol ID) number of all the protocol executors resident in the remote.
JP1 programs use this information to determine if a protocol upgrade is required, and also to determine the nature
of the fixed and variable data for a device upgrade. Both the PID and the variant play a part in this determination.

The entries are always in hex and preferably four digits, and are separated by commas. The list may span more
than one line. The $ is not to be used to indicate hex numbers in this section, since hex is mandated. Each
protocol listed may optionally specify a protocol variant after the protocol PID number. Normally the entries are
listed in PID number order, but that is not mandatory.

The entries are of the form:

 PID#[:VariantText]

For example, a [Protocols] section might look like this:

 [Protocols]
 0000, 0002:5, 0006, 0007, 000A, 000C, 000D, 000E, 0011, 0013,
 0014, 0015, 0018, 001A, 001B, 001C, 001D, 001E, 001F:8, 0021,
 0022, 0027:new, 0029, 002A, 002D, 002F, 0032, 0034, 0039, 003A,
 003D, 003F, 0045, 0046, 0056, 0058, 005A, 005B, 005C, 005D,
 005E:2, 005F, 0060, 0061, 0065:2, 0067, 0068, 006A, 006E, 0073,
 0078, 007E:3, 0083, 0087, 008D, 0092:3 0093, 0098, 009C, 009E,
 00A4, 00AF, 00B6, 00BE, 00C4, 00C9, 00CA, 00CD:2, 00CE, 00D0,
 00D7, 00DB, 00DE, 00E2, 00E3, 00E7, 00E8, 00F0, 00F2, 00F5,
 00F8:3, 00FC, 0103, 0109, 010C, 010E, 010F, 0111, 0114, 0115,
 0117, 0118, 0119, 011A, 011B, 0125, 012A:2, 0161, 016D, 0174,
 017E, 0182, 0184:2, 0186, 018B, 0190, 0194, 01A4

In this example, the protocol executor for PID 001F is present in the remote, and is variant type 8. Similarly, the
executor for PID 0027 is present and is variant type new.

By convention, omitting the variant implies that the remote contains the oldest known variant. The set of variants
that exist for each protocol executor is defined by the JP1 experts, and is constantly evolving. The variant text in
an RDF file must match the variant name present in the protocols.ini file (used by the RM program).

Creating these entries will typically require the help of a JP1 expert, and is beyond the scope of this document.

 JP1 RDF File Specification Version 4

 — 41 —

[SetupCodes] section

The [SetupCodes] section is optional in most cases (see below), and lists the setup code numbers of all the
setup codes resident in the remote. JP1 programs may optionally use this information to enforce validation of
setup codes entered by the user, and also to provide a convenient means for the user to select resident setup
codes.

The entries are of the form:

 DevTypeNum=SetupCodeList

where:
DevTypeNum is one of the device type numbers defined in the [DeviceTypes] section.
SetupCodeList is a list of setup code numbers that are resident in the remote for the device type.

DevTypeNum refers to one of the device types defined in the [DeviceTypes] section. There is normally an
entry in the [SetupCodes] section for each device type number; however, a device type number with no setup
codes should be omitted.

The SetupCodeList entries are always in decimal (hex is not allowed), and are separated by commas. Leading
zeroes are allowed, but not required; intervening spaces are allowed but not needed. The list may span more than
one line. Normally the entries are listed in numeric order, but that is not mandatory.

Note that only resident setup codes are allowed in this list, and the values of the setup codes are those used
internally by the remote, i.e., the value after the DevCodeOffset setting in the [General] section has been
applied. For example, if DevCodeOffset=17, and the user manual for the remote documents setup code 1017,
the internal setup code value is 1000 (1017 – 17 = 1000).

If the [SetupCodes] section is present in an RDF file, JP1 programs may use it to construct a list of setup codes
to present to the user as a convenience. In some cases, it is necessary to prevent a user from entering invalid
setup codes because a remote reacts badly to invalid codes. In those cases, validation of entered setup codes may
be enforced by inclusion of the [SetupCodes] section and making the appropriate SetupValidation entry in
the [General] section.

As an example, a [SetupCodes] section might look like this:

 [SetupCodes}
 0 = 0,3,8,9,12,14,17,52,53,74,76,82,99,107,113,143,144,152,159,180,209,210,
 212,216,237,238,247,269,273,276,279,280,295,305,317,392,476,477,525,533,
 566,637,639,701,722,724,749,772,775,790,810,819,855,856,869,877,883,899,
 1005,1006,1010,1076,1106,1109,1120,1126,1142,1170,1190,1219,1226,1246,
 1250,1254,1267,1268,1270,1272,1276,1285,1309,1324,1329,1344,1363,1364,
 1365,1376,1383,1392,1393,1403,1442,1443,1444,1490,1505,1639,1640,1749,
 1775,1856,1877
 1 = 0,1,3,16,17,18,19,20,21,24,27,30,32,38,39,46,47,51,52,53,54,55,56,60,80,
 88,90,92,93,96,111,135,136,145,146,150,151,154,156,157,159,165,166,171,
 177,178,179,180,185,186,187,217,236,250,280,282,360,381,386,442,451,463,
 466,491,497,511,587,603,623,628,632,638,650,672,679,683,688,689,690,700,
 702,703,704,706,707,717,720,748,751,761,765,766,767,768,769,774,783,799,
 802,809,812,813,814,815,817,824,832,833,834,836,839,840,842,843,845,847,
 849,851,853,854,855,856,857,864,865,866,868,870,871,872,875,879,1047,
 1060,1100,1145,1147,1154,1156,1178,1247,1250,1253,1254,1256,1347,1356,
 1410,1447,1454,1547,1656,1661,1704,1755,1756,1903,1904,1905,1906,1907,
 1909,1911,1913,1914,1917,1918,1919,1920,1922,1923,1924,1925,1926,1927,
 1928,1929,1931,1933,1935,1936,1937,1938,1939,1940,1941,1943,1944,1945,
 1946,1947,1948,1950,1951,1952,1953,1958
 2 = 0,2,8,20,32,33,35,37,38,39,41,42,43,45,46,47,48,60,61,67,72,81,89,104,
 105,106,121,124,149,159,162,175,184,202,208,209,222,225,240,271,278,307,

 JP1 RDF File Specification Version 4

 — 42 —

| 432,479,490,503,511,521,522,525,526,533,534,539,545,558,561,563,571,573,
 582,591,593,614,616,618,623,627,630,632,633,634,636,641,646,651,655,662,
 664,670,672,674,675,682,692,695,698,699,702,705,711,715,717,719,720,721,
 736,737,739,744,752,755,760,761,769,770,778,782,783,784,785,792,794,796,
 797,798,799,800,801,803,804,807,809,815,816,820,821,822,823,826,830,833,
 839,845,848,854,860,864,867,868,869,872,873,876,880,885,899,1001,1003,
 1004,1008,1014,1016,1020,1022,1023,1024,1027,1031,1032,1033,1035,1037,
 1041,1043,1044,1045,1048,1049,1051,1056,1057,1058,1060,1061,1062,1064,
 1068,1071,1072,1073,1074,1075,1077,1078,1081,1082,1085,1086,1087,1089,
 1094,1099,1100,1105,1107,1117,1121,1122,1145,1162,1181,1232,1237,1262,
 1278,1362,1462,1479,1490,1503,1521,1533,1593,1762,1781,1901,1902,1903,
 1904,1906,1907,1908,1909,1910,1912,1913,1914,1915,1916,1917,1918,1919,
 1923,1924,1925,1926,1931,1932,1934,1937,1938,1939,1940,1943,1944,1945,
 1946,1949,1950,1951,1954,1956,1957,1962,1964,1965,1967,1970,1972,1974,
 1975,1976,1977,1979,1980,1981,1984,1985,1986,1988,1989,1990,1992,1995,
 1996,1998,2000,2001,2002,2003,2006,2007,2010,2016,2017,2020
 3 = 4,8,10,11,13,14,27,31,39,42,52,54,62,73,74,76,77,78,80,85,97,106,110,121,
 128,133,135,143,150,158,159,160,163,165,168,176,177,181,186,189,193,195,
 208,211,219,220,224,235,239,244,246,251,264,269,273,300,308,309,313,314,
 320,321,322,331,346,347,354,356,360,367,380,382,391,395,404,405,406,424,
 459,460,463,474,491,502,504,518,520,521,530,531,569,576,577,582,606,616,
 630,639,647,670,674,689,738,765,771,801,815,842,857,891,892,1023,1042,
 1051,1052,1058,1074,1076,1077,1100,1120,1136,1142,1154,1176,1181,1189,
 1229,1243,1250,1251,1253,1254,1255,1257,1258,1263,1266,1267,1269,1273,
 1286,1288,1289,1293,1295,1298,1306,1308,1313,1316,1331,1349,1352,1360,
 1366,1370,1374,1375,1383,1384,1388,1389,1390,1393,1405,1406,1408,1412,
 1420,1423,1426,1428,1430,1437,1441,1442,1461,1462,1464,1469,1483,1485,
 1491,1495,1497,1500,1508,1511,1512,1514,1517,1518,1519,1528,1530,1531,
 1532,1548,1555,1556,1558,1561,1563,1569,1570,1605,1609,1641,1653,1658,
 1758,1759,1763,1764,1798,1801,1858,1869

Creating these entries will typically require the help of a JP1 expert, and is beyond the scope of this document.

 JP1 RDF File Specification Version 4

Transition From RDF 3 to RDF 4

The RDF version 4 specifications introduce a number of new items that, if used, will make an RDF file incompatible
with existing versions of various JP1 programs. Depending on the circumstances, these programs may respond
with error messages, crash, or by corrupting a remote memory image.

Several new items have been added to the [General] section that will not function with older program versions.
In general, older programs should safely ignore these entries, but it is possible that they could generate errors if,
for example, they contain syntax errors. The new items are:

 ExtenderVersionAddr
 MacroCodingType
 PauseParams
 RDFVersionAddr
 SetupValidation
 SoftDev
 SoftHT
 StartReadOnlySettings

Some existing items in the [General] section have had their syntax modified. Use of the newer syntax for these
entries will create compatibility problems with older programs. The items with modified syntax are:

 Labels
 TimeAddr

Entries in the [SpecialProtocols] and [DeviceButtons] sections have new syntax options that can cause
problems with older programs.

A new [SetupCodes] section has been added. Older programs should safely ignore entries in this section, but
care should be taken to make sure there are no syntax errors.

Because of the volunteer nature of the programming efforts within the JP1 group, it may take some time before all
the JP1 programs and tools that utilize RDF files can be updated to be compliant with this version of the RDF
specifications. During this period, an alternate syntax is provided that will enable older versions to operate
correctly, while at the same time allowing newer versions to take advantage of the additional functionality.

Notes within this document that display this symbol
indicate items that can create compatibility problems.

The alternate syntax detailed here may only be used in an RDF file that is otherwise compliant with the RDF
version 3 specifications. Therefore, the first requirement for using the alternate syntax is that the RDF file contain
this entry in the [General] section:
 [General]
 RDFSync=3

The alternate syntax may NOT be used in an RDF file where RDFSync=4.

Programs that are compliant with the RDF version 4 specifications are required to allow use of version 3 RDF files.

Each of the potential problem areas is discussed below, and an alternate syntax provided that can be used to
maintain compatibility with version 3 RDF files. Refer to the relevant sections of this document for a more detailed
discussion of these items.

 — 43 —

 JP1 RDF File Specification Version 4

 — 44 —

Labels ([General] section entry)

The Labels entry is in the form:
 Labels=UserLblAddr, Length [, [PadByte][, DfltLblAddr]]

Compatibility is affected when the options parameters PadByte and/or DfltLblAddr are used. If these
parameters are required, use the following entry form in a version 3 RDF file:

 Labels+=UserLblAddr, Length [, [PadByte][, DfltLblAddr]]

This entry will only be recognized by programs compliant with version 4 RDF files, and will be ignored
otherwise.

It is not possible to create an entry that will fully enable this functionality in older program versions. Partial
compatibility can be accomplished (assuming the remote requirements are satisfied) by adding a second
entry using the older syntax:

 Labels+=UserLblAddr, Length [, [PadByte][, DfltLblAddr]]
 Labels=UserLblAddr, Length

In this case, note that the Labels+ entry must be first.

TimeAddr ([General] section entry)

The TimeAddr entry is in the form:
 TimeAddr=Addr[, Format]

Compatibility is affected only when the optional Format parameter is used, and the Format value is either
BCD12 or BCD24. In this case, use the following entry form in a version 3 RDF file:

 TimeAddr+=Addr, Format

This entry will only be recognized by programs compliant with version 4 RDF files, and will be ignored
otherwise. It is not possible to create an entry that will enable this function in older program versions
because they can only supply the time value in the default Hex format.

If the Format value is Hex, the entry can be made compatible by simply omitting the Format parameter,
as Hex is the default value.

[SpecialProtocols] section

Programs compliant with version 3 RDF files are only prepared to accept entries in the
[SpecialProtocols] section that use this more restrictive form:

 SpecialProtocolName=PID

In addition, the Pause special protocol is allowed, but not supported with a user-friendly interface.

A compatible RDF file can be constructed by providing two sections for special protocols, as shown here:

[SpecialProtocols+]
Entries compatible with version 4 RDF files are in this section.

[SpecialProtocols]
Entries compatible with version 3 RDF files are in this section.

The “+” section must be placed before the “non-+” section in the RDF file.

 JP1 RDF File Specification Version 4

 — 45 —

As an example, a compatible RDF file for the URC-6131 extender could be constructed as follows:

 [SpecialProtocols+]
 DSM=TV/1103:-01FC
 LDKP=01F9 (LongKP,DblKP)
 Multiplex=01FE
 Pause=01FB058D (PauseEXT)
 Pause=01FB03E4 (PauseRMKM)
 ToadTog=0181

 [SpecialProtocols]
 DSM=01FC
 LDKP=01F9
 Multiplex=01FE
 ToadTog=0181

In some cases, where it may not be necessary to support any special protocols that use the older syntax,
the second (“non-+”) section may be omitted entirely.

[DeviceButtons] section

Each entry in the [DeviceButtons] section is formatted as follows:
 ButtonName=HiAddr LoAddr[TypeAddr][, SUCode]

Compatibility is affected only when the optional SUCode parameter is used. Specifically, the problem
occurs when SUCode is present and TypeAddr is omitted (as is the case for most remotes). In this case,
a compatible RDF file may be constructed by providing two section as shown here:

[DeviceButtons+]
Entries compatible with version 4 RDF files are in this section.

[DeviceButtons]
Entries compatible with version 3 RDF files are in this section.

The “+” section must be placed before the “non-+” section in the RDF file.

As an example, a compatible RDF file for the 15-1994 could be constructed as follows:

 [DeviceButtons+]
 CBL/SAT = $00A $00B, 0003
 TV = $00C $00D, 0047
 VCR = $00E $00F, 0060
 CD = $010 $011, 0032
 AUX1 = $012 $013, 0013
 AUX2 = $014 $015, 0080
 P&P = $016 $017, 0167

 [DeviceButtons]
 CBL/SAT = $00A $00B
 TV = $00C $00D
 VCR = $00E $00F
 CD = $010 $011
 AUX1 = $012 $013
 AUX2 = $014 $015
 P&P = $016 $017

 JP1 RDF File Specification Version 4

 — 46 —

Revision History

February 2, 2004 ME Initial rough draft combining old RDF 3 Specification document and Addendum.

November 25, 2004 ME Revisions to bring up to date with current versions of RM & IR (v5.xx).

August 28, 2005 ME Further modifications & revisions to initial draft. Bring up to date with features of IR v6.01.

October 13, 2007 ME Format revisions & corrections. Submitted for final review as Rev 004.

March 16, 2009 ME Update to include new functionality included in IR v8.00. Initial public release.

April 18, 2009 ME Further updates for IR v8.00.

May 4, 2009 ME Minor revisions for IR v8.00

	RDF file names
	File format
	[General] section
	Name
	OEMDevice
	Identification
	ImageMap
	KeyMoveSupport
	Labels
	LearnedAddr
	LearnedDevBtnSwapped
	MacroCodingType
	MacroSupport
	MaxProtocolLength
	MaxUpgradeLength
	OldRemoteID
	OmitDigitMapByte
	PauseParams
	PowerButtons
	Processor
	ProcessorVersion
	ProtocolDataOffset
	ProtocolVectorOffset
	RamAddr
	RDFSync
	RDFVersionAddr
	SectionTerminator
	SetupValidation
	Shift
	SoftDev
	SoftHT
	StartReadOnlySettings
	TimeAddr
	TimedMacroAddr
	TimedMacroWarning
	BaseAddr
	DefaultRestriction
	DevCodeOffset
	DevComb
	DevUpgradeAddr
	EepromSize
	EFCDigits
	ExtenderVersionAddr
	FavKey
	2BytePID
	AdvCodeBindFormat
	AdvCodeAddr
	AdvCodeFormat
	UpgradeAddr
	UpgradeBug
	WavUpgrade
	XShift

	[Extender] section
	DeviceSetup

	[SpecialProtocols] section
	[Settings] section
	[Checksums] section
	[FixedData] section
	[AutoSet] section
	[StaticUpgrades]
	[DeviceTypes] section
	[DeviceTypeAliases] section
	[DeviceButtons] section
	[Buttons] section
	[MultiMacros] section
	[ButtonMaps] section
	[DigitMaps] section
	[Protocols] section
	[SetupCodes] section
	Transition From RDF 3 to RDF 4

